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ABSTRACT
The purpose of this paper is to derive the on and off-axes magnetic
field of a solenoid with the use of a novel method. We have found
a solution for the Biot-Savart law by considering the solenoid with a
stationary electric current. The results have been compared to some
simplified and known analytical formulae as well as to a numerical
code showing a good agreement.
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1. Introduction

The determination of the magnetic field of a solenoid is crucial in physics and engineer-
ing. For example, in linear accelerators such as high brilliance photoinjectors and in high
gradient accelerating structures [1–6], in presence of the space charge, the effect of beam
blow-up has to be thwarted with a solenoid. Moreover solenoid are used in magnetic
correctors and steering devices for beam alignment [7].

We extend the results obtained in [8] by presenting the calculations to determine the
magnetic field components of a solenoid with a finite length. Unlike the previous calcula-
tion [8], in this paper, we assume the solenoid is not formed by discrete coils but by a sheet
of conductivematerial so that the current will be distributed on the surface of the solenoid,
with a surface current densityK and comparing the results bothwith the numerical and the
analytical results close to the axis of a circular coil.

2. Derivation of magnetic induction generated by a surface current element

Referring to Figure 1, andusing cylindrical coordinates, the pointpwherewewant to deter-
mine the magnetic field has coordinates (r, γ , z), while the position p′ of the infinitesimal
element of the solenoid having surface current density K is given by (R,α, z0). The vectors
s′ and s give the positions of the two points. With this notation, the Biot-Savart law for a
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Figure 1. Off-axis field due to a volume current element. B is the magnetic field at any point in space
out of the current loop. Bz is themagnetic field component in the direction of the coil axis. Br is the radial
magnetic field component. I is the current in thewire. R is the radius of the current loop. z is the distance,
on axis, from the center of the current loop to the field measurement point. r is the radial distance from
the axis of the current loop to thefieldmeasurementpointα denotes for the angle of the current element
γ stands for the angle of the observer where the magnetic field components are to be calculated.

solenoid of finite length can be written as,

B(s) = μ0

4π

∫
�

K × (s−s′)
|s − s′|3 d� (1)

whereKd� is a surface current element in the direction of current flow. The surface current
densityK and the infinitesimal surface elementof solenoidd� in cylindrical coordinates can
be obtained:

K = I

�
τ̂ , d� = Rdα dz0 (2)

where � is the length of the solenoid, dα is the infinitesimal variation of the angle and τ̂
stands for the unit vector tangent to the circumference of radius R and dα, τ = −î sinα +
ĵ cosα with î and ĵ the unit vectors along x and y, then Equation (1) becomes

B(s) = μ0K

4π

∫
�

τ̂ × (s − s′)
|s − s′|3 Rdα dz0 (3)

where cross product of τ̂ and (p − p′) is:

τ̂ × (s − s′) =
∣∣∣∣∣∣

î ĵ k̂
− sinα cosα 0

r cos γ − R cosα r sin γ − R sinα z − z0

∣∣∣∣∣∣
= î(z − z0) cosα + ĵ(z − z0) sinα + k̂(R − r cos(γ − α)) (4)

and

|s − s′|2 = r2 + R2 + (z − z0)
2 − 2rR cos(γ − α). (5)
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By some simplification Equation (1) becomes,

B(s) = μ0K

4π

∫ 2π

0

∫ �/2

−�/2
î(z − z0) cosα + ĵ(z − z0) sinα + k̂(R − r cos(γ − α))

[r2 + R2 + (z − z0)2 − 2ρR cos(γ − α)]3/2
Rdα dz0

= μ0K

4π

∫ 2π

0

∫ �/2

−�/2
(î cosα + ĵ sinα)(z − z0)+ k̂(R − r cos(γ − α))

[r2 + R2 + (z − z0)2 − 2rR cos(γ − α)]3/2
Rdα dz0. (6)

Writing the components of themagnetic field along the x, y and z coordinates,B(s) = Bxî +
Byĵ + Bzk̂, and then converting them to the cylindrical coordinates we obtain

Br = B(s) · r = Bx cos γ + By sin γ (7)

Bγ = B(s) · τ̂ = −Bx sin γ + By cos γ (8)

where,

τ̂ = (− sin γ , cos γ , 0) (9)

r = (cos γ , sin γ , 0). (10)

After some algebraic manipulation we obtain,

Br = μ0K

2π

∫ Mz�

−Mz�

(Mz − Mz0)[1 + η2 + (Mz − Mz0)
2]−3/2 dMz0

×
∫ π

0
cos(ψ)[1 −� cos(ψ)]−3/2 dψ (11)

Bγ = μ0K

2π

∫ Mz�

−Mz�

(Mz − Mz0)[1 + η2 + (Mz − Mz0)
2]−3/2 dMz0

×
∫ π

0
sin(ψ)[1 −� sin(ψ)]−3/2 dψ (12)

Bz = μ0KR

2π

∫ Mz�

−Mz�

[1 + η2 + (Mz − Mz0)
2]−3/2 dM0

×
[∫ π

0
[1 −� cos(ψ)]−3/2 dψ − η

∫ π

0
cos(ψ)[1 −� cos(ψ)]−3/2 dψ

]
(13)

where η = ρ/R,Mz = z/R and�(R, z, η) = 2η/(1 + η2 + M2
z ). To solve the above integrals

we had to deal with two fractional integrals of order 3/2. We solved these integrals by
using fractional Cauchy-like integral formula. We cut the created branch line and change
the multi-valued operation into the analytic function. The procedure can be found in [8],∫ π

0
[1 −� cos(ψ)]−3/2 dψ = π(1 +�)−3/2

2F1

(
1
2
,
3
2
; 1;

2�
1 +�

)
(14)

∫ π

0
cos(ψ)[1 −� cos(ψ)]−3/2 dψ = −π(1 +�)−3/2

[
2F1

(
1
2
,
3
2
; 1;

2�
1 +�

)
− 2F1

(
3
2
,
3
2
; 2;

2�
1 +�

)]
(15)
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where 2F1( 12 ,
3
2 ; 1;

2�
1+�) and 2F1( 12 ,

3
2 ; 1;

2�
1+�) are the ordinary hypergeometric functions

having a general form of the kind

pFq(a1, . . . , ap; b1, . . . , bq; z) = �∞
n=0

(a1)n . . . (bp)

(b1)n . . . (bp)n

zn

n!
(16)

where (ap)n, (bq)n are the rising factorial or Pochhammer symbol with

(a)0 = 1 (17)

and

(a)n = a(a + 1)(a + 2) . . . (a + n − 1), n = 1, 2, . . . . (18)

It should be noted that Equation (12) is zero due to azimuthal symmetry. By changing of
variables Equations (11) and (13) become,

Br = μ0K

2

∫ √
(1+η)2+(Mz+Mz� )

2

√
(1+η)2+(Mz−Mz� )

2

1
β2

[
2F1

(
1
2
,
3
2
; 1;

4η
β2

)
− 2F1

(
3
2
,
3
2
; 2;

4η
β2

)]
dβ

= μ0K

2
1
β

[
2F̄1

(
3
2
,
1
2
; 2;

4η
β2

)
− 2F̄1

(
1
2
,
1
2
; 1;

4η
β2

)]∣∣∣∣
√
(1+η)2+(Mz+Mz� )

2

√
(1+η)2+(Mz−Mz� )

2
(19)

and

Bz = −μ0K

2

∫ √
(1+η)2+(Mz+Mz� )

2

√
(1+η)2+(Mz−Mz� )

2

1
β2(β2 − (1 + η)2)1/2

[
2F1

(
1
2
,
3
2
; 1;

4η
β2

)

+ η

(
2F1

(
1
2
,
3
2
; 1;

4η
β2

)
− 2F1

(
3
2
,
3
2
; 2;

4η
β2

))]
dβ (20)

with,

β = [(1 + η)2 + (Mz − Mz0)
2]1/2 (21)

where 2F̄1( 32 ,
1
2 ; 2;

4η
β2
) and 2F̄1( 12 ,

1
2 ; 1;

4η
β2
) are the regularized hypergeometric functions

having a general form of the kind

pF̄q(a1, . . . , ap; b1, . . . , bq; z) = �∞
n=0

(a1)n . . . (bp)n

(b1 + n) . . . 
(bp + n)n

zn

n!
(22)

where (ap)n, (bq)n are the rising factorial or Pochhammer symbol with (a)0 and (a)n are
the same as Equations (17) and (18). We could also write the regularized hypergeometric
functions in a simple way pF̄q(a1, . . . , ap; b1, . . . , bq; z) = (
(b1) . . . 
(bp))−1

pFq(a1, . . . , ap;
b1, . . . , bq; z). To validate Equations (19) and (20)wewould investigate theon axis field com-
ponents.We observe that the regularized hypergeometric functions in Equation (19) cancel
each other and consequently the radial field component becomes zero. On the other hand,
for on axis axial field components we can derive a classic equation which can be found in
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many physics textbooks and papers [8–10]:

Bz = μ0IR2

2(R2 + z2)3/2
. (23)

The near axis magnetic field components have been expressed by the authors of [10] as
follows,

Br(r, z) = 2�∞
p=0pGS2p(z)r

2p−1 (24)

Bz(r, z) = �∞
p=0GS2p+1(z)r

2p (25)

where,

GS2p(z) = μ0Ic
2R2pZL

�∞
k=0F0,2p,2k+1[f2k+1(ZL − z)+ f2k+1(ZL + z)] (26)

GS2p+1(z) = dGS2p(z)

dz
and g2k+1(t) = df2k+1

dt
= (2k + 1)R2

(R2 + (Z − z)2)3/2
f2k(t). (27)

with the following definitions,

fh(t) =
(

Z − z√
R2 + (Z − z)2

)h

, (h = 0, 1, . . .∞) (28)

F0,2p,2k+1 = (−1)p

4p(p!)2
(MpF00)2k+1 (29)

where M stands for the second derivative of functions f2k+1 and F00 is reported in [10].
Taking the first two terms of the magnetic field components we obtain:

Br(r, z) = μ0JS
4

[
3R2(ZL − z)

(R2 + (ZL − z)2)5/2
− 3R2(ZL + z)

(R2 + (ZL + z)2)5/2

]
r (30)

Bz(r, z) = μ0JSR2

2

[
R2 + (ZL − z)2 − 3r2

(R2 + (ZL − z)2)5/2
− R2 + (ZL + z)2 − 3r2

(R2 + (ZL + z)2)5/2

]
(31)

where the total current of the solenoid being IS, the density function JS(Z) on its lateral
surface is:

JS(Z) = IS
2ZL

[u(Z + ZL)− u(Z − ZL)]. (32)

A solenoid is considered as a set of coils uniformly covering the space between−ZL and ZL.
Equation (30) is coincident with Equation (19) when we consider the first two terms in the
regularized expansion of the hypergeometric series 2F̄1( 32 ,

1
2 ; 2;

4η
β2
) and 2F̄1( 12 ,

1
2 ; 1;

4η
β2
).

3. Numerical results

WebNIR [11] (Web-based tools for assessing occupational exposure to Non-Ionizing Radia-
tion), a portal collecting a series of tools for dissemination and calculation developed as
part of a collaboration with other research institutions on exposure to electromagnetic
fields, has been developed at the Institute of Applied Physics ‘Nello Carrara’ of the National
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Research Council (IFAC-CNR). One of these tools, still under development, allows the user
to define different types of configurations of conductors (polygonal chains, catenaries,
coils, solenoids), define both their geometric and electrical characteristics (current, phase,
waveform) and calculate the value of magnetic flux density in correspondence to a set of
regularly distributed points in the space (the calculation grid). Two different approaches
have been used to perform the calculation: (1) since the field of a segment traversed by
current is known, any geometry can be approximated by a polygonal chain consisting of
an arbitrarily large number of segments; calculating the field generated by each of them,
the resulting field is given by the sum of the individual contributions; (2) for a circular loop,
the analytical solution of the field in the space is known [8, 12]: consequently, the field gen-
eratedbygeometries consistingof a set of circular loops (e.g.: coils, solenoids) is determined
exactly by considering the elementary contribution of each loop. An ‘internal validation’ of
the software results has been carried out by comparing the results obtained by applying,
in the case of a solenoid:

• the formulation using the complete elliptic integrals of first and second kind [12]

Br = μ0I

2π r
√
z2 + (a + r)2

(
z2 + r2 + a2

z2 + (r − a)2
E(k)− K(k)

)
(33)

Bz = μ0I

2π
√
z2 + (a + r)2

(
a2 − z2 − r2

z2 + (r − a)2
E(k)+ K(k)

)
(34)

• the formulation that uses the hypergeometric function [8]

Br = μ0IMz

4
√
2πR

(
�

η

)3/2

I2(�) (35)

Bz = μ0I

4
√
2πR

(
�

η

)3/2

(I1(�)− ηI2(�)) (36)

where,

I1(�) =
∫ π

0
[1 −� cos(ψ)]−3/2 dψ = π(1 +�)−3/2

2F1

(
1
2
,
3
2
; 1;

2�
1 +�

)
(37)

I2(�) =
∫ π

0
cos(ψ)[1 −� cos(ψ)]−3/2 dψ

= −π(1 +�)−3/2
[
2F1

(
1
2
,
3
2
; 1;

2�
1 +�

)
− 2F1

(
3
2
,
3
2
; 2;

2�
1 +�

)]
. (38)

We can demonstrate that the magnetic field components obtained by two different
methods are identical following the below equations:

E

(
2�
�+ 1

)
= π

2
1 −�

1 +�
2F1

(
1/2, 3/2, 1,

2�
�+ 1

)
(39)

2F1

(
3/2, 3/2, 2,

2�
�+ 1

)
= 4E( 2�

�+1 )+ (�−1
�+1 )K(

2�
�+1 )

2π�(1−�)
(�+1)2

(40)
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where K(k) and E(k) are the complete elliptic integrals of the first and second kind,
respectively.

• the approximate calculation in which the helix which constitutes the solenoid is
approximated with a polygonal chain. The number of segments constituting the sin-
gle loop has been progressively increased in different tests (in detail, the loop was
approximated with 20, 200 and 2000 segments).

The result obtained in the first 2 cases is coincident up to the 13th digit: the 2 formulations
are equivalent and the discrepancies are due to the approximations implicit in the libraries
used. In particular, the language used to perform the calculations is Python 3.9 and the
library scipy.special deals with calculating elliptic integrals and hypergeometric functions.

Comparison of these results with those obtained from the approximation with a polyg-
onal chain showed a progressive convergence as the number of segments with which the
helix is approximated increases.

Finally, in the center of a solenoid with the following characteristics: 200 loops,
radius=25mm, distance between loops=1mm and current intensity=200A, the result
coincideswith that expected from the theoretical formula for the infinite solenoid, given by
B = μ0NI

�
where N indicates the number of loops, I the current, � the length of the solenoid

and μ0 is the magnetic permeability in vacuum. With the specified parameters we obtain:
B = 8 × 10−2T ≈ 0.25T which is consistent with the numerical results obtained through
the software in WebNIR, as shown in Figures 2–4. Figure 2 shows the numerical result of
the Bz component along the axis of the solenoid (η = r/R = 0, R = 25mm).The results are
obtained through theuseof the tool inWebNir. Figure3(a,b) shows the trendofBz andBr for
an off-axis case of 20mm, respectively. The trend of Bz and Br orthogonally to the solenoid

Figure 2. Trend of the Bz component along the axis of the solenoid (the radial component is zero), the
results are obtained through the use of the tool in WebNir.
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Figure 3. (a,b) Trend of Bz and Br 2 cm off axis, (c,d) Trend of Bz and Br orthogonally to the solenoid axis,
1 cm off the inlet, (e,f ) Trend of Bz and Br 0.5 cm off solenoid. The results are obtained through the use
of the tool in WebNir.

axis with 10mm off the inlet can be observed respectively in Figure 3(c,d). The field com-
ponents of Bz and Br with the 5mm off solenoid are shown in Figure 3(e ,f), respectively.
The results are obtained through the use of the tool in WebNir. Figure 4(a) and shows the
modulus of Bz on a longitudinal section, through the center of the solenoid. The modulus
of Br on a longitudinal section is shown in Figure 4(b). The results are performed using the
tool in WebNir.

4. Conclusions

The computation of the induction obtained theoretically was compared with a computa-
tion obtained independently, and both themathematical equivalence of the two analytical
derivations and the exact correspondence with the simple case of the field along the axis
of the loopwere demonstrated. Furthermore, the implementationwithin an independently
developed software allowed once again to successfully compare the results obtained with
the two methods (which use in the final formulation the complete elliptic integrals of the
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Figure 4. (a) Modulus of Bz on a longitudinal section, through the center of the solenoid. (b) Modulus
of Br on a longitudinal section, through the center of the solenoid. the results are obtained through the
use of the tool in WebNir.

first and second species and the hypergeometric functions, respectively) and verify their
consistency both with the simple case of the field along the axis, and with the approximate
calculation for a solenoid of infinite length (analytically calculable).
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